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ABSTRACT

STABILITY OF THREE-DIMENSIONAL COMPRESSIBLE

BOUNDARY LAYERS.

Samarasingham Jeyasingham

Old Dominion University, 1999

Director: Dr. P. Balakumar

A program is developed to investigate the linear stability of three-dimensional

compressible boundary layer flows over bodies of revolutions. The problem is for-

mulated as a 2D eigenvalue problem incorporating the meanflow variations in the

normal and azimuthal directions. Normal mode solutions are sought in the whole

plane rather than in a line normal to the wall as is done in the classical 1D stability

theory. The stability characteristics of a supersonic boundary layer over a sharp

cone with 5 ° half-angle at 2° angle of attack is investigated. The 1D eigenvalue

computations showed that the most amplified disturbances occur around x2 = 90 °

and the azimuthal mode number for the most amplified disturbances range between

m = -30 to -40. The frequencies of the most amplified waves are smaller in the

middle region where the crossflow dominates the instability than the most amplified

frequencies near the windward and leeward planes. The 2D eigenvalue computations

showed that due to the variations in the azimuthal direction, the eigenmodes are

clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are

clustered in two regions. Due to the nonparallel effect in the azimuthal direction,

the eigenmodes are clustered into isolated confined regions. For some eigenvalues,

the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the

azimuthal direction, the most amplified disturbances are shifted to 120 ° compared

to 90 ° for the parallel theory. It is also observed that the nonparallel amplification

rates are smaller than that is obtained from the parallel theory.

0 The format of this thesis is based on American Institute of Aeronautics and Astronautics Journal

and was typeset in D-TEX2_ by the author.
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CHAPTER 1

INTRODUCTION

The transition of viscous flows from laminar to turbulent is one of the most

challenging problems in fluid mechanics. In a typical commercial aircraft, 50 percent

of the total drag force is due to the skin friction drag (Hefner and Bushnell [35] 1979).

[n supersonic and hypersonic vehicles, the equilibrium temperature on the surface

determines the quality of material to be used in making the surfaces. Prediction of

the transition onset point, the location at which the laminar boundary layer starts

to become turbulent, is critical in the design of aerodynamic vehicles. The accurate

prediction of the transition onset point is also very important in the application of the

laminar flow control (LFC) methods to subsonic and supersonic aircrafts. Successful

prediction of transition onset point depends on understanding the transition process

and transferring the understandings onto a prediction tool.

Though there are several mechanisms and routes to go from a laminar to

a turbulent state, in quiet environments all of them, in general, follow these funda-

mental processes.

- Receptivity

- Linear instability

- Nonlinear stability and saturation

- Secondary instability

Breakdown to turbulence.

In the receptivity process, the unsteadiness in the environment and the in-

homogeneities in the geometry generate instability waves inside the flow. In quiet



environments, the initial amplitudesof theseinstability wavesare small compared

to any characteristic velocity and length scalesin the flow. Goldstein [:36](198:3

a) theoretically explainedusing asymptotic methods how the Tollmien-Schlichting

waves(T-S waves)aregeneratedneara leadingedgeof a flat plate by the long wave-

length acousticdisturbancesand in a companionpaper [:37](198,5b) describedthe

scattering of T-S wavesfrom the acousticdisturbancesby the streamwisevariations

in surfacegeometries.In the secondstage,the amplitudesof theseinstability waves

grow exponentiallydownstreamandthis processis governedby the linearizedNavier-

Stokesequations, l?urtherdownstream,the amplitude of the disturbancesbecome

large and the nonlinear effects inhibit the exponential growth and the amplitudes

of the disturbanceseventually saturateor attain singular values. In the next stage,

thesefinite amplitude saturateddisturbancesbecomeunstable to two and/or three

dimensionaldisturbances.This is called secondaryinstability and can be analyzed

usingFloquet theory,Herbert (1988) [38]. Beyondthis stagethe spectrumbroadens

due to complexinteractionsand further instabilities and the flow becomesturbulent

in a short distancedownstream.In this thesis,we investigatedthe linear instability

of three dimensionalsupersonicboundary layersover a sharp cone at an angle of

attack.

Depending on the boundary layer profiles and flow parametersdifferent

types of linear instability wavesaregeneratedinside the boundary layers. For sta-

bility analyses,boundary layerscanbe divided into following groups.

IncompressibleFlows CompressibleFlows

I I

Two-dimensional Three-dimensional Two-dimensional Three-dimensional

In incompressible two-dimensional boundary layers, the disturbances may
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Fig. 1.1 Schematic of velocity components within a swept-wing boundary layer illus-

trating the definition of the cross-flow velocity (Reed & Saric).

take one of the following instability waves.

(1) inviscid instability (Rayleigh instability)

(2) viscous instability (Tollmien-Schlichting instability ).

Inviscid instability waves are generated by the interaction of inertia and

pressure forces. This instability exists when the boundary layer contains an inflection

point in the velocity distributions. The examples are boundary layer profiles in

adverse pressure gradients, wakes, jets and in separated flows. Viscous instability

waves are generated by the interaction of inertia, pressure and viscous forces. In this

type of instability, energy is transferred from mean flow to the disturbance motion

through the action of viscosity. Hence, these flows are inviscidly linearly stable but

unstable to infinitesimal disturbances at finite Reynolds numbers. This instability

is found in the plane Poiseuille flow and in boundary layer regions where pressure

gradients are small, e.g, Blasius boundary layer.



Three-dimensionalboundary layersare definedas the flows where the in-

viscid streamlinesare curved. In a three-dimensionalboundary layer, there exists

another instability mode,calledcross-flowinstability. When the inviscid streamlines

are curved, there exists a pressuregradient in the direction normal to the inviscid

streamlines. Inside the boundary layer, due to the viscouseffects, the velocity is

smaller than that in the inviscid region. Hence,this pressuregradient causesa veloc-

ity componentinside the boundarylayerthat is perpendicularto the inviscid-velocity

vector. This componentis calledcross-flow. A schematicdiagram showing differ-

ent componentsof the velocity insidea boundary layer is given in figure 1.1. The

cross-flowvelocity profile hasa maximum velocity somewherein the middle of the

boundary layer and goesto zeroon the body surfaceand at the boundary layeredge,

thereforeexhibiting an inflection point. The descriptionof the instability causedby

the cross-flowwasfirst given in the classicpaper by Gergory,Walker, Stuart [40]

(1956). When the cross-flowcomponentis combinedwith the velocity component

in the inviscid direction, they form a mean velocity profile that has an inflection

point at which the velocity is zero. This permits a neutral disturbance with zero

frequency. This neutral disturbance appears as vortices that all rotate in the same

direction and take on the form of the familiar "cat's eye" structure when viewed in

the stream direction. This phenomena is observed in several flow geometries such

as rotating cones ( figure 1.2 ), swept wings (figure 1.3), spheres (figure 1.4) and

rotating disks ( figure 1.5).

The stability characteristics of compressible two-dimensional and axi-symmetric

boundary layers have been thoroughly investigated (Lees and Lin (1946) [41] ,

Lees and Reshotko(1962) [42], Mack(1969) [43], Gaponov(1981) [44], Malik and

Spall(1991) [4,5]). The main conclusions that are drawn from these investigations

can be summarized as follows. (1) The quantity (p'U)' d, dU,= _(PT_), where p and U

are the density and the streamwise velocity distributions of the meanflow and y the
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coordinate normal to the wall, plays the same role in the compressible stability the-

ory as U" does in the incompressible theory. The location where (p'U)' = 0 is called

the _Generalized inflection point". In most of the compressible boundary layers, the

density profile has an inflection point p" = 0 and due to this compressible boundary

layers exhibit generalized inflection points. As a consequence, the flat-plate/ cone

compressible boundary layers are unstable to purely inviscid disturbances. This is

one of the important difference between the instability of incompressible and com-

pressible flows. (2) When the mean flow relative to the neutral disturbance phase

velocity becomes supersonic over some portion of the boundary layer, there exist sev-

eral unstable modes. For two-dimensional disturbances, it is the first of the additional

modes, called the second mode, which is the most unstable at all Mach numbers for

which the relative flow is supersonic. (3) At higher Mach numbers, the viscosity has

only a stabilizing influence on the boundary layer. (4) Considering three-dimensional

disturbances, the amplification rate of the first mode increases while the amplification

rate of the higher modes decreases with the increasing waveangles. In the inviscid

1
limit, the phase velocity of the first mode varies from 1 - D- to Cs, where M is the

free stream Mach number and Cs is the mean flow velocity at which the generalized

inflection (p'U)' = 0 occurs. To have unstable first mode disturbances the general-

l
ized inflection point should appear above the mean velocity 1 - _. For the second

mode, the phase velocity C varies from C_ to 1. At low Math numbers there exists

no supersonic region near the wall relative to the phase velocity Cs, hence no second

mode instability exists at low Mach numbers. The supersonic region first starts to

appear in the inviscid limit at M = 2.2 in an insulated flat plate boundary layer.

The lowest Mach number at which the unstable second mode region has been located

at finite Reynolds numbers is M = 3. The second mode instability increases with

increasing relative supersonic region.

Linear stability of axi-symmetric three-dimensional compressible boundary



layers were investigated by Balakumar and Reed (1991) [19]. As discussedpre-

viously, at low Mach numbers,in compressibleflows the most amplified wavesare

oblique while in incompressibleflows they are two-dimensional. This is due to the

fact that in supersonicflows, the amplification rate increaseswith decreasingMach

numbers. Sincein an oblique direction, the effectiveMach number decreaseshence

the amplification rate increasesfor three-dimensionalwaves.For a free-streamMach

numberof M = 3, the wave angle of the most amplified wave is inclined at about

55 ° . As described earlier, in incompressible flows the cross-flow velocity component

introduces a new instability called "cross-flow instability" and the disturbances are

incliaed very close to the cross-flow direction. In compressible flows, the cross-flow

basically increases the amplification rates of the first mode and makes the most am-

plified disturbances inclined more towards the cross-flow direction. Balakumar and

Reed's calculation showed that the amplification rate of the first mode is increased

by a factor of 2 to 4 due to the cross-flow compared with a two-dimensional flow and

this increase decreases with increasing Mach number. It was also shown that the

waveangles of the most amplified waves are increased by about 10 ° and the effect of

the cross-flow on the second mode is as expected small.

In general three-dimensional boundary layers, the mean boundary layer

profiles vary in all three directions: streamwise, spanwise or azimuthal and normal

directions. However, in the high Reynolds number boundary layer flows the varia-

tions in the streamwise and in the spanwise directions are smaller than that in the

normal directions. In the classical stability theory, these variations in the streamwise

and in the spanwise directions are neglected and it is assumed that the boundary

layer profiles vary only in the normal direction and uniform in the other two direc-

tions. This makes the coefficients of the linearized Navier-Stokes equations to be

independent of the streamwise and spanwise coordinates and permit one to seek a



solution in the normal modeform

¢(xl, x_, x3, t) = (_(x3)e i_':_+_':2-_t, (1.1)

where xl , ,r: and x3 are the coordinates in the streamwise, spanwise and in the normal

directions, t is the time. q)(x3) is the eigenfunction , c_, ;3 are the wavenumbers in

the streamwise and spanwise directions and _o is the frequency. In general, c_, 3 and

are complex.

ct = c_ + io_i , (1.2)

,3 =/3_ + i/3i , (I.:3)

vs = _,> + i_'_ • (1.4)

When the normal mode form Eq. i.i is substituted into the linearized Navier-Stokes

equations , a homogeneous system of ordinary differential equations with homoge-

neous boundary conditions are obtained. The solution of which yields a dispersion

relation among o_,/3 and co of the form

F(a,/3,¢v) = 0 • (1.5)

The real and imaginary parts of the relation yield two equations in terms

of the six unknown parameters (ar,c_;) , (/3r,¢_i) and (o.,r,wi) . To determine these

six unknowns one needs to specify four additional conditions. Two approaches are

generally used to overcome these difficulties. One is called the temporal eigenvalue

approach in which the wavenumbers c_,3 are prescribed as real numbers and the

complex frequency w is solved from the dispersion relation Eq. 1.5. The other method

is called spatial eigenvalue approach in which the frequency ¢o and the spanwise

wavenumber fl are prescribed as real numbers and the complex wavenumber a is

solved from the dispersion relation.



Temporal Problem

ct = err , real prescribed

;3 = '3r , real prescribed

a., = _ q-iaai , solved from eigen relation

_i<0,

---_0,

>0,

frequency of the disturbance

amplification rate of the disturbance in time

the boundary layer is stable

the boundary layer is neutrally stable

the boundary layer is unstable

Spatial Problem

_o = co_ , real prescribed

3 =/3_ , real prescribed

a = a_ + iai , solved from eigen relation

mC_ i

-ai <0,

>0,

wavenumber in the streamwise direction

growth rate in the streamwise direction

the boundary layer is stable

the boundary layer is neutrally stable

the boundary layer is unstable

In the temporal method, wi measures the amplification of the disturbances

in time and in the spatial method, -c_i measures the growth rate of the disturbances in

the streamwise direction. The boundary layer is stable, neutrally stable or unstable to

small disturbances depending on whether the amplification rate _oi or -ai is less than

, equal to or greater than zero respectively. Most of the linear stability computations



have been performed based on these classical approaches. In this work, this approach

is called 1D method.

The next step is to estimate the correction to the eigenvalues that is ob-

tained from the parallel theory due to the small variation of the meanflow in the

streamwise and in the spanwise directions. Three methods are available to compute

the evolution of small disturbances in a non-parallel flow. One and the oldest method

is the multiple scale approach (Saric, Nayfeh [46]). The second is the Parabolized

Stability Equations (PSE) approach (Herbert 1979 [53] )and the third method is

to solve the full Navier-Stokes equations in a non-parallel flow ( Easel [49] , Joslin

[51]). In the linear regime, instead of solving the full Navier-Stokes equation, the

linearized Navier-Stokes equations are solved [52]. In the multiple scale and in the

PSE methods the disturbances are written in the form

(I)(xl, X3) ---- (I)o(Xl, X3)eif c_(xl)dxl+i_x2-iwt (1.6)

Here w is the real frequency,/3 is the real spanwise wavenumber, _(xl ) is the stream-

wise wavenumber which is a function of xx and _o(xl, xa) is the amplitude function

which is a function of both Xl and xa. This form of the representation is mathemat-

ically and physically meaningful in a meanflow which varies only in the streamwise

(xl) and normal (xa) direction and is uniform in the spanwise (x2) direction. These

approaches are used to compute the evolution of the disturbances in two-dimensional

Blasius type boundary layers and in quasi-three dimensional, infinite swept wing,

boundary layers ( E1 Hady [48], Herbert [331 and Malik [34] ).

The objective in this work is to investigate the stability and the evolu-

tion of disturbances in fully three-dimensional boundary layers. By the fully three-

dimensional boundary layers it is meant boundary layer flows over finite wings,

flow over non-axisymmetric geometries like ellipsoids, delta wings and flow over axi-

symmetric geometries at angles of attack etc. Specifically, in this thesis the stability
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of supersonic boundary layer flows over a sharp axi-symmetric cone at an angle of

attack (King 1992 [54]) is investigated. In this case, the meanflow varies in all three

directions, streamwise, azimuthal and in normal directions. Since the mean flow

varies in the azimuthal direction, it is not possible to decompose the disturbances

as a sum of Fourier components as is done in the axi-symmetric or in the infinite

swept wing flows. The expectation is that since the instability is directly related to

the local mean flow conditions, the eigenfunctions will be confined to a region in the

azimuthal direction. Hence, the normal mode is written in the form

(I)(Xl, X2, X3) = I_o(Xl, X2, x3)ei f c4xl)dxl-iwt (i.71

The azimuthal variation is included in the amplitude part d;'(xl,x2, xz)

which now becomes a strong function of x2 and x3 and a slowly varying function

of xl. If the xl dependence of _o and a are dropped, one can obtain an eigenvalue

problem for a or w and _o(X2, x3) which is a function of x2 and x3coordinates. This

is called as 2D eigenvalue problem.

Several experiments were performed to understand the stability and transi-

tion of supersonic and hypersonic two dimensional and three dimensional boundary

layers. The experiments can be divided into two groups. One is transition experi-

ments in which the transition onset is measured at different flow conditions (Potter

1974 [18], Krogmann 1977 [55], Stetson 1981 [9], King 1992 [54]). In these exper-

iments, the unit Reynolds number effects and the effects of the angles of attack on

the transition front are investigated.

Since there is no length scale in flows over sharp cones, the transition

Reynolds number should not change with the free stream unit Reynolds numbers.

However, experiments performed in different wind tunnels at different Reynolds num-

bers change with the free stream unit Reynolds number. Though transition is influ-

enced by several factors, bluntness, angle of attack, vibration of the model, roughness,
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free stream disturbance levels, spectral content of the free stream disturbance, the

unit Reynolds number effects are generally attributed to the radiated acoustic field

from the boundary layers on the tunnel walls. Main conclusion is that in quiet tun-

nels at low unit Reynolds numbers the boundary layers on the wall remain laminar

and the effect of unit Reynolds number on the transition Reynolds number is mini-

mal. In noisy wind tunnels the boundary layers on the walls become turbulent and

the transition Reynolds numbers decrease with the unit Reynolds numbers.

The experiments performed over sharp and blunt cones at small angles of

attack show that the transition front moves downstream on the windward ray and

moves downstream on the leeward ray.

The second type of experiments are the stability experiments where the

stability characteristics of the boundary layers are investigated. Stetson and his co-

workers systematically investigated the stability characteristics of hypersonic bound-

ary layers in natural conditions (Stetson et.al., 1983 [10], 1984 [11], 1985 [12], 1986

[13], 1989 [14]). Their results are summarized in a review paper by Stetson and

Kimmel(1992) [15]. Experiments were performed on sharp and blunt cones with 7 °

half angle at a free stream Mach number of 8 at zero and nonzero angles of attack

and with adiabatic and cooled surface conditions.

The experiments agree with the theoretical predictions that the transition

in hypersonic boundary layers is dominated by the high frequency second mode type

disturbances. However, the measured growth rates are much smaller than that is

computed from the linear stability theory. It is also observed that the small nose

bluntness increases the critical Reynolds number from that for a sharp cone. Flow

over a sharp cone at an angle of attack showed that the boundary layer along the

windward direction becomes more stable and on the leeward side it becomes more

unstable compared to that is obtained at zero angle of attack. Hence transition on

the leeward side moves downstream and in the leeward side moves upstream from
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that for a sharp cone. The frequenciesof the most amplified disturbanceson the

windward side are larger than that is obtained for a sharp coneat angleof attack.

This is attributed to the finding that the frequencyof the most amplified wavesin

hypersonicboundary layersdependsinverselyon the boundary layer thicknesswhich

is smaller than that is obtained at zeroangleof attack, hencethe frequencyof the

most amplified wavesare higher. Unit Reynoldsnumber effectsare investigated by

measuringthe spectral contentof the free-streamdisturbancesand the rangeof the

most amplifiedfrequenciesfor the the boundarylayer. It is observedthat most of the

energyin the freestreamdisturbancesarecontainedin the lowfrequencydisturbances

and the spectrum for the high frequencydisturbancesare very small. But it was

concludedthat the high frequencydisturbanceswith very small amplitudes are are

sufficient to initiate the secondmode disturbances.It wasalsoobservedthat if the

frequencyof the most amplified wavefor the boundary layer is much higher than

the frequencylimit in the free-streamdisturbancespectrum,then the most amplified

wavewill not be initiated and the transition is dominated by the smaller frequency

waveswhichareexcitedby thefree-streamdisturbances.Instantaneousstructure and

the ensemble-averagedstructure of the secondmodeinstability wavesin a hypersonic

boundary layer wasmeasuredby Kimmel et. al. (1997) [22], Poggie(1997) [7]

in natural conditions. It is observedthat the secondmode disturbancestravel as

wavepacketsconfined to a small region in the circumferential direction. Recently

Poggieet. al. (1998) [6] investigatedthe stability and transition of a hypersonic

three-dimensionalboundary layer over an elliptic cone. Transition front appears

asymmetricwith early transition closeto the minor axisand delayedtransition close

to the major axis which is similar to that is observedin the flow over a sharp cone

at an angleof attack.

King (1992) [54]investigatedthe transition of a three-dimensionalbound-

ary layerin NASA Langley'sMach3.5quiet tunnel. The experimentswereperformed
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for a ,5° half angle sharp cone at various angles of attack. The transition is dominated

by crossflow dominated instability and the transition onset point moves downstream

near the windward side and moves upstream near the leeward side. This case is cho-

sen to investigate the stability characteristics of a three-dimensional boundary layer

using the 2D eigenvalue method.
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a) Rotational speedbelowcritical- no instability apparent

b) Rotational speedslightly abovecritical - spiral streaksareobserved

c) Rotational speedfar abovecritical- spiral streaksareobserved,then

secondaryinstability superposedon the vortices, then transition

Fig. 1.2Flow visualization for a Spinningcone(Kobayashiet al. 1983)
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Fig. 1.3 Naphthalene surface patterns illustrating cross-flow vortices Saric & Yeates

1985). Flow is from left to right.

Fig. 1.4 Flow visualization for a rotating sphere: spiral streaks are observed , then

the secondary instability superposed on the vortices, then transition (Kohama &

Kobayashi 1983b).

~ .



16

Fig. 1.5 Flow visualization illUst:rating thespiral vortices on a disk (Kohama 1984a).
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CHAPTER 2

FORMULATION

This chapter describes the formulation of the linear stability theory of three-

dimensional compressible boundary layer and the numerical procedure that is used

to solve these equations for a model case - supersonic flow over a sharp cone at an

angle of attack. The first section deals with the derivation of the linear Parabolized

Stability Equations in its most generic form i.e, in generalized curvilinear coordinate

system. In the second section, the classical one-dimensional stability equations and

the two-dimensional stability equations are derived from the general theory as special

cases.

As described in the introduction, the stability problem is formulated in two

different methods. The first methodology is to make a locally parallel flow assump-

tion i.e, neglect the meanflow variations in the streamwise and azimuthal directions

and formulate the problem as a 1D eigenvalue problem. In other words, the solutions

to the stability equations are sought in a line normal to the cone surface. In fact,

large portion of the literature on stability computations of three-dimensional and two

dimensional boundary layer8 are performed as 1D eigenvalue problems. But the par-

allel flow assumption will not hold true for flow8 which are highly three-dimensional

and the stability computations and transition prediction will not be correct. Hence

in an attempt to construct a near approximate solution to the full Navier-Stokes

equation, the variation of the meanflow in the azimuthal direction is incorporated

in the second method and formulated as a 2D eigenvalue problem. Thereby normal

mode solution is sought in a plane at a streamwise location, rather than in a line as

in the former method. In both cases, 1D and 2D eigenvalue approaches, the problem

can be formulated as temporal or a spatial stability methods. In the temporal stabil-
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ity the wavenumber in streamwisedirection c_ is known and the desired eigenvalue

is the temporal frequency aa, whereas in spatial stability _ is fixed and a is sought.

There are two classes of numerical methods that can be used for the com-

putations of the temporal or spatial eigenvalues from the eigenvalue problems: global

and local methods. In the global method a generalized eigenvalue problem is set up

and the eigenvalues are obtained using some standard algorithms such a.s QZ avail-

able in the public-domain software library LAPACK. Here, a guess for the eigenvalues

is not required. On the other hand, in the local method a guess for the eigenvalue

is required and only the eigenvalue that happens to be in the neighborhood of the

guessed value is computed using some iterative techniques. These methods will be

discussed in detail in the last section of this chapter.

2.1 Formulation of the Stability Theory

The growth or decay of infinitesimal perturbations superimposed on a laminar flow

is the focus of linear stability theory. The linear stability theory analyzes the char-

acteristics of the instabilities of the mean laminar flow over the surface of interest.

Transition prediction is basically composed of two tasks; (1) accurate calculation of

the viscous flow field over the the body, (2) calculation of the amplification rate. The

stability properties of two-dimensionM incompressible and compressible boundary-

layers and three-dimensional incompressible and compressible boundary-layers were

discussed in the first chapter. In this section, the derivation of the linear stability

equation, starting from the compressible three-dimensional Navier-Stokes equations

in orthogonal curvilinear coordinate system is presented. Normal mode method is

chosen in the formulation. Since the final expression for the linear stability equa-

tions in the generalized curvilinear coordinate system contain numerous terms only

linearized continuity equation will be given.



Fig. 2.10rthogonal curvilinear coordinatesystem
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2.1.1 Governing Equations

The derivation of the stability equations starts from the Navier-Stokes equations for

three-dimensional compressible flow for an ideal viscous gas in orthogonal curvilinear

coordinate system . The governing equations are the continuity equation, the mo-

mentum equations in the streamwise, azimuthal and normal directions and energy

equation. In addition, perfect gas equation of state is used to 'close' the system

of fluid dynamic equations. A body-oriented coordinate system is used as shown

in figure 2.1, with xl taken along the streamwise direction, z2 along the azimuthal

direction and z3 normal to the surface. The Navier-Stokes equations in the vector

form are:

Continuity equation

Op
0---/+v.pv = 0 • (2.1)
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Momentum equations

(0v )p --_-+V.VV =pf+V.IIij

Energy equation

Equation of state

p = pRT •

(2.2); i,j = 1,2,3 •

(2.3)=V.(_VT)+_ •

(2.4)

The first term on the right hand side of the momentum equations, Eq. 2.2,

is the body force per unit volume. Hi) represents the component of the stress tensor,

which consists of normal stresses and shearing stresses. (I) in the energy equation,

Eq. 2.8, is the dissipation function.

The expanded form of these expressions as given by Anderson et.al. [32] is

adopted here.

Continuity equation

o--i+ h,h2h-----_ (h_h3p,.,,)+ (h3h,pu_)+ (h,h_p_3) = O. (2.5)

Xl momentum

0ttl pttl 0it1 ptt2 0ttl pit3 0ttl pttltt2 Oh1 pulua Oha

P-'_ + hi Oxl + h20z2 + h30x3 + hih2 0x2 + hlh3 0x3

pu_ Oh_ pug Oh3
hlh_ Oxl hlh3 Oxa

l [ O (h2haIl_,_,,) + £(hlhzII_,_2) + £(hlh2II_:_,_3)lhlh2ha

1 Oh1 1 Oh1 1 Oh2

+II_:2 hlh2 Ox2 + IIx_.3 hlh3 Oxa H.:_,_ hah2 Oxl

1 Oh3

-H3:a=3 hlh3 Owl



X2momentum

O_U2

p_____ + pul Ou2 pu_ Ou_ pu30u_ pu_ Oh_ pu_u_..__Oh_._2

pu2u_____2 Oh_._3_ _ pu____Oh__2
+ hzh3 0::3 h2h30z_

0

+_z2x3 1 Oh2_ 1 Oh_ _ 1 Oh3

i Ohz

X3 momentum

(2.6)

Ou3 pul Ou3
;--5[ + --z;? +

PUl U30ha

h_ ha Ozl

PU2 0u3 pu3 0u3 PuZl Oh1

h_h3

I [0 0 0

hah_ha -_-_ (h_haFi_:_) + _z (h, h31]_ ) + -_z_(h_h_II_) ]

1 (gha 1 Ohz

+ + _

I Oh_

pc_
OT OT ua OT uz OT u3 OT1

(2._)
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+ hlh2h3 t)z2 0z3

0
1 [(_.__._(]t_h2]_3lI,l_lX3).jf - khl h3IIx2,F3 )

-h h ha (

Here ul, u2 and ua are velocities along the streamwise(xx) , azimuthal(x2) and

normal(x3) directions respectively and p is the density, p is the pressure, # is the

coefficient of viscosity and x is the coefficient of thermal conductivity, hi, h2 and ha

are the metric coefficients along the coordinates ah, z2 and xa respectively. In the

generalized curvilinear coordinates, the dissipation function becomes

g_ = # 2(eu 2 +e222-t-e332)-t-e232 +e132 +e122- 5(eu at-e22-t-e33) , (2.9) •

where the expressions for the strains are

10ul u3 Oh1 u2 Oh1

eu - hi OXl + hlha Ox3 + hxh20x2 '

10u2 ua Oh2 ul Oh2

e22 - h20x2 + h2h30x3 + hlh20xl '

10ua ltl Oh3 u2 Oh3 (2.10)
e33 - ha Ox3 + hlh30xl + h_h30x2 '

10u3 10u2 u2 Oh2 u30h3

e2a - h20x2 + ha Oxa h2ha Oxa h_h3 0x2 '

10ua 10u3 ul Oh1 u3 Oh3

e13 -- h30Xl -t" hi Oxl hlha Ox3 hlha OXl '
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10u2 10Ul u2 Oh2 ul Oh1

e12 -- h l (_X 1 + h'-_3Z--"_ -- hl_ 20Z 1 -- hlh20x2

The component of stress tensors appearing in the momentum equations Eq. 2.6.

Eq. 2.6 and Eq. 2.7 can be expressed as

'2 [ '_1 0ttl 9li2 0hl 2'43 Ohl 10lt 2 43 0])2[IXlXl = --P + _# Ox----_l+ hlh20z2 + hlh30x3 h20x2 h2h30z3

ul Oh2 l Ou3 _10h3 42 Oh3]
hlh2 Oat h:_ Oxa hlh3 0xl h2ha Oxl J

[10u2 *t2 Oh2 1 07_t I It 1 Oh1]
I-['rlX2 = # hl 0Xl hlh20Xl + h2 i)x,2 hlh2 -5-x-z_J

10Ul ul Oh1 l Ou3 ua Oh3][I_,x3 =# ;30x3 hzh3Ox3 + h, Ox, hlh3_zlJ

2

IIx2x_ = -p + ._#
20qU2 2U3 0h2 2Ul Oh2 10u 1 it2 Oh1

----+ +
h20x2 h2h30x3 hlh20xl hi Oxl hlh20x2

tt3 Oh 1 i OU3 41 Oha '42 Oh3] (2.11
hlh30x3 h30x3 hlh30xl h2h3 -_z2J '

# [ 10u3

Re [ h2 0z2
u3 Oh3 10u2 42 Oh2]

h2h30x2 + h30x3 h2h30xaJ

20u3II._ = -p + _# _ Ox3
2Ul Oh3 2u2 Oh3 10Ul u2 Oh1

----+ +
hi h30Xl h2 h30z2 hi OXl hi h20x2

2.1.2

tt3 0hl 10u2 u3 Oh2 Ul Oh2]

-hah3 Oxa - h20x----_ - h2h3 0x3 - hlh2-_z_ ]

Linearization of the equations

The principle of classical stability theory evolves around the concept of determining

whether a small disturbance introduced into a laminar boundary layer will amplify
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or decay. If the disturbance decays,the boundary layer is stable and if the distur-

bance grows it is called linearly unstable. In stability theory, the first step in the

methodologyof analyzingthe evolution of small disturbancesis to assumethe 'total

flow' ascomposedof meanquantities and small disturbancequantities.

Q(271, a?2,223, t) = Q(Xl, 2"2, X3, t) -'}- q(xl, 222, 2?3,t),

and in components form

-"7-
Ul = [_'i + ul ,

U2 = (;2 + u2 ,

U3 = L;a+ u3 ,

p=p +rr ,

T=T+O,

+p, (2.13)

where Q is the total quantity, Q is the mean quantity and q is the disturbance

quantity.

The stability equations are derived as follows: first, the expressions for

total flow quantities, Eqs. 2.13, are substituted into the Navier-Stokes equations

Eqs.( 2.6 - 2.8). Since it is assumed that the mean-flow terms satisfy the steady

Navier-Stokes equations, the mean terms can be subtracted out, resulting in terms

consisting of products of mean-flow and disturbance quantities (Q q) and the products

of disturbance terms (q q). Secondly, in the linear theory, since the nonlinear terms,

the products of infinitesimal disturbances, are of lower order than rest of the terms,

they are neglected. Substituting the normal mode form for the disturbances, Linear

Stability Equations (LSE) are obtained.
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2.1.3 Nondimensionalization of the Equations

As is customary and convenient, the LSE are written in nondimensional form using

some characteristic quantities. The characteristic velocity is Uo, which is taken to be

the value of streamwise velocity at the edge of the boundary-layer in 1D formulation

and the boundary layer edge velocity' at a reference station x2 = 90 ° in the case of

2D formulation; the characteristic length is L, which is given by the expression

_* (2.14)
L = V U*o '

The thermodynamic quantities are nondimensionalized by their corresponding boundary-

edge values i.e, the characteristic density, temperature and molecular viscosity are

p_, T_ and #_ respectively, the characteristic pressure is pfl)f and the characteristic

L
time is _.

The non-dimensional quantities are

ttl* tt2* It3*

ltl -- Uo* ' it2 = _'-_o* ' tt3 - Uo* '

v* O* p*
zc-- • ., O-- , p-- ,

p_Uo T/" p_"

u-;- -07"1 __ _" __ W
Uo*' 5o" Uo*'

- _ -F -g"
T-T, F- , -#- ,

Xl* X2 * X3*

Xl- L' x2- L' x3- L '

*

t= -£Uo*. (2.15)

Here the superscript • denotes the dimensional quantities. Some of the non-dimensional

parameters which appear in the equations are defined below.

Free-stream Mach number

M Uo . (2.16)
,/_RTo
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Prandtl number

Pr = Cp _. (2.17)
t,-

Here Prandtl number is assumed to be constant and taken to be 0.7 all through the

computations. The constants of specific heat at constant pressure and volume are

related by

Cv = ,,/C_,. (2.1s)

The values of ratio of specific heats 7 and gas constant R are taken to be

*f= 1.4, (2.19)

R = 2S7m2/s_°/( • (2.20)

2.1.4 Reduction of the Number of Variables

The Linear Stability Equations contain perturbation terms, ua, u2, u3, 7r,0, p, FL and

_, which are the unknown variables. Since some of these variables are related to

other variables by simple equations such as Eq. 2.4, Eq. 2.17 one can easily elimi-

nate them from the stability equations. This will resutt in substantial reduction in

computational effort and storage requirements.

The coefficient of viscosity # is assumed to be a function of temperature

only and Sutherland's viscosity law is used in the computations.

where

.e - k_J \r?_7-c/ ' (2.21/

C = 110.4K/T_, (2.22)

and Te is the temperature at the edge of the boundary-layer. Hence, the total vis-

cosity term which is the sum of mean and perturbation quantities, can be written
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as

_- + # =/_(T + 0),

and using Taylor series expansion for small temperature fluctuation O, one can write

i

_(:r + 0) = _,(T)+ o,(___f)0 + .. ,
OT

OT

Hence the disturbance # can be written as

+.- (2.2a)

_= °"_-o
OT '

using equation gq. 2.24 the derivatives of # become

(2.24)

0_ 0zg0T 0 0g 00
Oxi - OTz _ + OT Ozi

For reasons that would become clear later in this chapter it is chosen to

express re in terms of density fluctuation p and temperature fluctuation 0, rather

than eliminating p from LSE. The equation of state in non-dimensional form is

p"/M 2 = pT , (2.25)

The pressure fluctuation is related to density and temperature fluctuations by the

expression

reTM 2 = pT + -fO , (2.26)

or,

re= p+ 0 •

And the derivatives of re with respect to the coordinates are

(2.27)



Hence,the dependentvariablesin the stability equationsare Cl= {ul, u2, u3, p, O} T.

2.1.5 Introduction of Harmonic Disturbances

As discussed previously, the stability of a three-dimensional boundary layer is inves-

tigated by seeking a solution of the form:

q(171,172,z3, t) = (t(,r1,x2,173)e i f °dxl-iwt -_ c.c • (2.29)

^ T

Here Cl = {fix,ti'2, ti'a, fi, 0} , is a complex amplitude function of the disturbance

variables; a(zl) is the wavenumber in the streamwise direction and w is the temporal

frequency of the disturbances.

The first and second derivatives of q(zl, z2, z3, t) with respect to the stream-

wise coordinate 171 are

01710qq = {{O_(171)_(X I ,.=,-3) + 377.1J (2.30)

. do_ ^02q -ofl(x,)_t(x_ z_,za) + z_xlq(x_,z2,x3 )_x fl -

oq 02¢t _ e ifc_(xl)a_l-i_t+ ' + j (2.31)

Since the variation of the amplitude part of the disturbance q in the stream-

wise direction is very small, the term _ is neglected and the equation Eq. 2.31
Ozl 2

becomes

. da . . Oq } eif_(,:a)d_,_i_ t
0% -a_(Zl)O(x_ z_,

03;.1----_ _'_ , 173) + z-_zq(z_,x2, x3) + 2m-_x 1

(2.32)
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By substituting these expressions into the linear stability equations Eq. 2.6 -

2.8 one can obtain a set of partial differential equations for ct. These sets of equations

incorporate the effect of meanflow variation in streamwise direction and approximate

the full Navier-Stokes equations. The concept was first introduced by Herbert [aa]

and the resulting equations are termed Parabolized Stability Equations(PSE).

The PSE for compressible flow in generalized coordinates contain number

of terms, and hence, in order to save space, only the linearized continuity equation

in non-dimensional form is given here.

--( )1 Oh3 UI 1 0hl 10U1 U_ Op
-- i ga2p -[- h l h 3 (_X l p ..Jr- 121h 2 0 x 21) _ f i -_ h-7 O x-_ jo -{- K i og p -{- _ 1

+

-- m

1 Oha _ 10U2 U20p10hlpuT+ + ----P + ----
hlh20x2 h2h3 (_x2 p 2 h20x2 h2 cox2

+
10u3 U._ Op

1 Oh: 1 Oh1 fl_3 + ha ha Ox3h2h3 0,r3 pUF_a+ hlh30x3 ---_xa p + ----

1 Oha_ 1 Oh2_ 10-fi ffl Oul+ hlh3OXlflltl-. }- hlh20321flUl--_- h--TOg---71ttl-.} - (ioAtlq-_x-Txl) (2.33)

1 Oh1_ 1 Oha_ 10-fi -fi Ou2

+ hlh_Ox_p*'_+h_h_Ox_p_+ gOx---;_+ h-Tax--7

+
1 Oh2_ 1 Oh1_ 10-'fi -fi Ou3

plt3 q- --- q'- ---
h2h3 0x3 TM + hlh3 ctx3 ha Ox3 u3 ha Ox3

= O.

The sets of linear PSE equations for 61 can be written in matrix form as

02it 0_el 0_et 0=et 0=it
A2_ + A3_ + AI2-O.---_-.=+ A,30_0_ + A,__Ox2Ox_
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ae_ B aq 0_
+ 8, _ + _a,-7 + 83 _ + Cq : 0. (za4)

Here, A2 A3, A12, A13, A23, 81, 82, ]_3 and C are (5x5) complex matri-

ces which are functions of mean-flow quantities and their derivatives, a, _, and the

metrices hi, h2, h3 and their derivatives.

2.1.6 Boundary Conditions

At the solid wall, no-slip conditions apply to the disturbance velocities. The temper-

ature perturbations are assumed to vanish at the solid boundary. This is a reasonable

assumption since for almost any frequency of the gas, the temperature fluctuation

will not penetrate into the solid boundary due to the thermal inertia of the solid

body i.e, the wall can only remain at its mean temperature.

ul =u2=ua=0=0; at za=0 •

The boundary conditions in the far field are that disturbances decay to zero.

(2.35)

ul, u2, u3, 0 --+ O; as xa -+ co. (2.36)

The numerical procedure which is used in the computations need one more

boundary condition to be specified for the density perturbation. Since the den-

sity does not vanish at the wall and the PSE equations are valid both at the solid

boundary and at infinity, the linearized continuity equation or the normal momentum

equation can be used as the fifth boundary condition at the wall and at the farfield.

2.1.7 Linear Stability Equations

2D Problem
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If the xl derivative terms in the Parabolized Stability Equations are dropped.

one can obtain 2D linear stability equations which are systems of partial differential

equations in x2 and x3.

02_1 e)2et 02el Oil
A2_z22 + &Oz3---7 + A23az---_z 3 + B2_ + u3_ + 6:;a = 0 (2.:17)

This corresponds to applying classical parallel stability theory, in the .rl

direction and seeking normal mode solution of the form

q(Xl,X2, X3, t) ---- (t( X2, X3)eicdzl)xl-iwt -}- C" C (2.:18)

Here c_ is the streamwise wavenumber, co is the temporal frequency. In this work,

the temporal stability computations are performed where

c_ = at, real prescribed,

w =wr-i-iwi •

co is computed from the dispersion relation

F(.,co) =o. (2.4t)

1D Problem

In this method of formulation the variations of meanflow in the streamwise

direction and azimuthal directions are neglected and the disturbance quantities are

assumed to be periodic in the azimuthal direction. This is equivalent to applying

classical stability theory in xx and x3 directions and to seeking normal mode solution

of the form

q(xl,x2, x3, t) = 61(xa)e _+_m_2-i't + c. c • (2.42)
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Applying the chain rule for the normal derivatives, one obtains

get(.3)
dx3

dx3 2
(2.49)

With these transformations the stability equations in the new coordinate 7/ becomes

det
A3\dx3/ dr) \dx3]

+ -m2A2 \_] +imB2+C 6t = 0
(2.50)

The system of equations are discrescretized using fourth-order central finite

difference scheme. At the solid boundary second-order forward differencing and at the

outer boundary and second-order backward differencing are used. The second-order

accurate forward difference formula at j = 1

0¢ --3¢j -4- 4¢j+1 -- ¢j+2

= 2At/ ' (2.,51)

02¢ _ CJ - 2¢j+1 + ¢j+2 (2.52)
Or/2 Aq 2

The second-order accurate backward difference formula at farfield (j = N ) are

0___¢¢= 3¢j - 4¢j-1 -4- ¢j-2 (2.53)
Or/ 2A_ '

02¢ Cj - 2¢j__ + ¢j-2
m

0r) A_ _
(2.54)

At the grid point next to the solid boundary, j = 2, equations are descretized by the
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third-order four-point finite difference scheme

0¢ -¢j__ + 6¢j - 30j+1 - 2¢j+2

0r/ 651/

02¢ Oj -- 2¢j+1 + Oj+2

07"]2 '.__1_2

Similarly at j = N - l, third-order four-point finite difference scheme is

(2.56)

Od) 2¢j-2 + 30j-i -- 6Oj -- 20j+1

= 6.xr/ '

020 ¢j -- 20j+1 + Oj+2

Or/2 Ar/2
(2.58)

At the interior points (j = 3 ---, N - 2) the equations are descretized using fourth-

order central difference formula

0¢ = -¢3+2 + 8¢j+1 - 8¢j_1 + ¢j-2 (2.59)
Or/ t2Ar/ '

the form

02¢ _ -¢j+2 + 16¢j+1 - 30¢j + 16¢j-1 - ¢j-2 (2.60)
Or/2 12/..Xr/2

The descretized system of equations yields an algebraic system equations of

AL2(bj_2 + ALI(/)j_t + AD(bj + AUI(/)j+I + AU2(bj+2 =0;

j =2, N-1. (2.61)

Here AL2, ALl, AD, AU1 and AU2 refer to the lower subdiagonal, sub-

diagonal, diagonal, superdiagonal and upper superdiagonal matrices of size (5x5)

respectively. I,j represents the vector ct at grid point j. The descretized system of

equations and the homogeneous boundary conditions at the wall and at the outer

boundary yield a homogeneous block penta-diagonal system of the equations as shown

in figure 2.3 .
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_____ ....

....N__NN
Nr__N

cI_ 2

cI_ 3

_n-2

cI_
m m

m m ,

0

0

0

0

0

0

Fig. 2.3 Block penta-diagonal system
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2.2.2 2D Eigenvalue Problem

In this section, the numerical procedure that is used to solve the 2D eigenvalue

problem is described. The linear stability equations for this case is given in equation

Eq. 2.37. As it was discussed previously, tile eigenfunctions are now hmctions of

azimuthal (,r2) and normal (x3) coordinates. The derivatives in the normal direction

can be descretized using the fourth-order central difference scheme that is used in

the solution of 1D problem. The problem is how to descretize the derivatives in tile

azimuthal direction. First, they were descretized using the central finite difference

scheme. The solution that was obtained were very oscillatory and it was necessary

to distribute too many grid points in the x2 direction. This turned out to be very

expensive and required enormous memory. Therefore, this method was abandoned

and it was decided to use the Fourier series method to resolve the variables in the x2

direction.

In this method, the dependent variables ct and the coefficients of the partial

differential equations A2, A3, A23, B2, B3 and C are represented by Fourier series in

the form
/1,_ OQ

,Ct(.._2, X3) -_- _ ,0n(X3)e _'nx'_, (2.62)

rl,_-- OQ

Y'/I _ OO

A(x2, x3) = E Jkm(X3)eim_2 ' --Tr _ x2 < 7r. (2.63)
*m,_-- OO

In the numerical procedure, it is necessary to replace the infinite Fourier series by

finite sums in the form

rl, _ ]Vrr_ a a:

_l(X2, x3) = _ qn(x3)e '''_ , (2.64)
n_ - Nma_

Yl!, _ Mrn rl.r.

A(x2,x3)--- E Jkm(x3)¢ imx2 , -Tr <_ x2 <_ iv , (2.65)

m -._ -- ivl, l tl .l_

where N.,._ and M.,._ are the maximum number of modes kept in the Fourier expan-

sions for the disturbances and their coefficients respectively. The Fourier components
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fikm are obtained using the Discrete Fourier Transform formula

Jkm- 21_1maz E
X \C irnx2Am(x2, 3I

The derivatives of the eigenfunction (t(x2, x3) in the x2 direction now become

0 t(x , x3) N.....
-- E " * inx2_nqn(X3)e ,

OX2 n=-Nmax

(2.66)

(2.67)

-- E (--"t2)¢tn(X3)e'nx2 "

0X22 n=- Nmax

(2.6S)

Substituting these expressions into the governing equation and collecting terms, one

obtains the following ordinary differential equation for each Fourier mode, no.

,_=N_ d 2_t______n
E fik3(no -n) dx32 + (irtfik23(n°-n) -t- g3(no-n)) dqn

n=Nl dx3

-t- {--rt2fik2(no-n)-Jr-i_g2(no-n) -t- (_](no-n)} qn ---- 0,(2.69)

no = -N,_, Nma_.

Here

N1 = min{Nm_, no + _Im_} ,

N2 = max{-N_, no - Mm_,} • (2.70)

Since the mean velocity is symmetric about the windward plane, x2 = 0,

the stability equations permit symmetric and antisymmetric type disturbances. For

symmetric disturbances, the Fourier modes are related by

52(-,0 = -52(n); n = 0, N_ •

(2.71)

(2.72)
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and for antisymmetric disturbances

{_,(__), a_(_,,),a-n, O_,,} = -{ a,(n), _(n), an, 0n},

52(__) = (_2(_); n = 0, A_ •

Hence, it is sufficient to solve the equation, Eq. 2.69, for no = O, :V,,_. Now,

the equations Eq. 2.69 which is similar to equation Eq. 2.44 in ID problem and can be

solved using the fourth-order central difference scheme. When the equation Eq. 2.69

is descretized using the fourth-order central formula, again an algebraic system of

equations in the form

AL2_j_ 2 + ALICj_I + ADq_j + AUI#j+I + AU2¢j+ 2 = O;

j=2,:¢-1. (2.75)

is obtained. The size of the matrices AL2, ALl, AD, AU1 and AU2 now becomes

{5x(Nm:_ + 1),Sx(Nm_ + 1)}. The descretized system of equations and the homo-

geneous boundary conditions at the wall and at the outer boundary again yield a

homogeneous block penta-diagonal system of equations as shown in figure 2.3.

Eventhough the block penta-diagonal system can be solved efficiently, it was

found that if the system is rewritten as a banded system it can be solved two times

faster using the LAPACK subroutines ZGBTRF and ZGBTRS. The transformation of

penta-diagonal matrix system into a banded matrix is easily implemented as quoted

in LAPACK user's guide.

If A represents the penta-diagonal matrix system i.e,

[AD]

[AL1]

A= [AL21

[AU1] [AU2]

[AD] [AUt] [AU2I

[ALl] lAD] [AU1] [AU2I

• , • ,. ".

JAn2] [AL1] lAD]

(2.76)
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minimum requirement of 50 Fourier modes in the azimuthal direction and 30 points

in the wall-normal direction, the size of the matrix A becomes (5x50)x30 = 7500

and it takes about :32 hours of CPU-time on a Sun-Ultra 2 workstation.

However, in real situations it is not required to find all the eigenvalues.

It is sufficient to compute a few most unstable eigenmodes. This can easily be

obtained using Implicitly Restarted Arnoldi Method using ARPACK software package

developed by Lehoucq, Sorensen, Yang [[]. This method finds specified number of

eigenvalues in a region close to a specified point in the complex a0 plane very efficiently.

When applied to an eigenvalue problem with the matrix A of a size of 10000. it takes

only 20 minutes oil the same workstation mentioned above to compute 10 eigenvalues

located close to the specified point in the complex w plane.

The rest of the section will focus on the details involved in the formulation of

generalized eigenvalue problem to be solved using the Arnoldi Method. It is observed

from linear stability equation Eq. 2.34, that the frequency co appears as simple ' rms

of first power.

- Continuity equation : -icop + ...,

- zl momentum equation : -icon1 +...,

- x2 momentum equation : -i_oT_u2 + ..-,

- xa momentum equation : -iw_)'ua +." ",

- Energy equation : -i_o-_O +...

Therefore, in an attempt to capture the eigenvalues accurately, the global method

is formulated as a temporal one. The temporal global eigenvalue formulation is as

follows.
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In order to solve an eigenvalueproblem like equation Eq. 2.78 using the

Arnoldi algorithm using the softwarepackageARPACK,it is required that the ma-

trix B beasymmetricpositivedefiniteor a symmetricsemi-definite.The appearance

of temporal frequencyw asafirst powertermsonly, in the stability equations,suggest

an appropriate selectionof disturbancevector of q = {ul,u2, u3, p,0} T with corre-

sponding order of stability equations - xl momentum, .r2 momentum, ,r3 moment.urn

equations, continuity equation and energy equation respectively. This assures the di-

agonal, and hence symmetric formation of matrix B. This is the reason for replacing

pressure fluctuation _ by density and temperature in the stability equations.

A further reduction of the generalized eigenvalue problem Eq. "2.78 to a

more storage efficient standard eigenvalue formulation of the form

A_ = _ , (2.79)

can be obtained by manipulating the homogeneous boundary conditions. The pro-

cedure will be explained for the case of 1D eigenvalue formulation,and the similar

manipulation can be applied to 2D eigenvalue as well. The only zero rows in matrix

B are that corresponds to the boundary conditions ul, us, Ua and 0 as shown below.

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

Cont eqn ...

0 0 0 0 1

A

• . o

• . o

• ° .

• • o

' I
ttl

lt2

It 3

P

0
1

0

0

0

i

0

B

I tt 1

It 2

It 3

0
1

(2.so)
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And the middle elements of B take the form

B=

i

(2.8:)

Without any loss of generality in the boundary conditions, the zero terms

in B can be replaced by unity. Further, dividing the continuity equation by i and

momentum and energy equations by i_ will make B an identity matrix. Hence the

resulting eigenvalue problem is reduced to equation Eq. 2.79.

2.2.4 Local Method

The local methods are used to confirm and refine the eigenvalues obtained from

global solver• But, global methods are computationally much more expensive than

the local methods since they compute the whole or part of the eigenvalue spectrum

of the descretized system• However, the local eigenvalue solvers require a guess for

the eigenvalue and hence make the use of a global solver inevitable•

It was shown earlier that, the system of descretized stability equations can

be formed as a lock penta-diagonal system or as banded matrix format• It can be

seen that these equations are homogeneous and in order to avoid trivial solutions,

Malik [34] suggests replacement of boundary condition ul(xa=0) = 0 by the normaliz-

ing condition that the pressure fluctuation (or equivalently density fluctuation in the

present case ) rr0,3=0 ) = 1. Thus, the equations are transformed into an inhomoge-

neous system. But here, a different approach will be followed• After experimenting

with a number of different normalizations, it was found that a faster rate of con-

vergence resulted by replacing continuity equation in the middle of the boundary
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layer wall-normal location by the normalizing condition ul = 1 . ( In the case of 2D

eigenvalue problem, a Fourier mode tq_ = 1 is used for normalization).

Consider the missing continuity equation denoted by _?(,\) = 0. Here )_ refers

to the exact eigenvalue i.e, the streamwise wavenumber c_ if it is spatial formulation

or temporal frequency _ if the problem is considered as temporal.

Suppose _o represents the guess for the eigenvalue and L)_ the error from

the exact value so that _,(,\ + _,k) = 0. Now, using Taylor series expansion for ,XA

0 _l'

+ b--55 A = 0, (2.82)

5A = ,_,(Ao)
(ov/oA ) (2.83)

The iterative procedure for local 1D temporal stability will be described

below.

* For a specified wavenumber c_, formulate the penta-diagonal system for shape-

function ct, normalize the with ul = 1 by replacing continuity equation at

wall-normal grid point jmid where the phase speed C = a_r/c_ is about 0.7 .

* Iterate on the guess value for temporal frequency _Oountil the missing continu-

ity equation is satisfied. The correction Aw is determined from the equation

Eq. 2.83.

The procedure for spatial formulation is similar; where temporal frequency

is fixed and the Newton-Raphson iteration is done on guess value for c_ until con-

vergence is reached. For 2D eigenvalue problem, a Fourier component with maximum

amplitude is used for the normalization.
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2.3 Summary

To conclude this chapter, the formulation are summarized as a schematic diagram.

Parabolized Stabilty Equations(PSE) I

Parallel Flow

I
] 1D Eigenvalue Problem I

assumptions]

I 2D Eigenvalue Problem I

lTem_orallI_patial

L

Spatial

1

I

Fig. 2.4 Stability problem formulation
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CHAPTER 3

MEANFLOW COMPUTATIONS

The stability computations basically involve two steps. The first step is to

compute the mean velocity profiles accurately. The mean flow can be obtained bv

solving the boundary layer equations, Parabolized Navier-Stokes (PNS) equations or

full Navier-Stokes equations depending on the problem that is being analysed. In

this work, we investigate the linear stability of supersonic boundary layers over a

sharp axi-symmetric cone at an angle of attack. The mean flow was computed using

the well developed TLNS3D code which was developed at NASA Langley Research

Center by Vatsa and Wedan (1990) [3].

3.1 TLNS3D

Three-dimensional time-dependent Thin-Layer Navier-Stokes equations are used in

TLNS3D for modelling the flow. The set of equations are obtained from the com-

plete Reynolds-averaged Navier-Stokes equation by retaining only the viscous diffu-

sion terms normal to the solid surfaces. The TLNS3D code employs eddy-viscosity

hypothesis to model turbulence; the Baldwin-Lomax turbulence model is used for

turbulence closure. In this work, the mean flow is computed for laminar flow.

The steady-sate solutions to Thin-Layer Navier-Stokes equations are ob-

tained using a semidiscrete cell-centered finite-volume algorithm, based on a Runge-

Kutta time-stepping scheme. In order to suppress odd-even decoupling and oscil-

lations in the vicinity of shock waves and stagnation points, a linear fourth or-

der difference-based and nolinear second order difference-based dissipation is added.

TLNS3D incorporates both the scalar and matrix forms of the artificial dissipation

models; but in the mean-flow calculation over the sharp cone matrix form is used.
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_ (X I'X2'X3)
Z

I\
x 3

-17

Fig. 3.1 The coordinate system for the cone located in a supersonic flow at an angle

of attack (M_ = 3.5).

For the sharp cone the Cartesian coordinate system (z, V, z) is located at the

vertex and a body-oriented coordinate system (xl, z2, :Ca) fixed in time is considered

with zl along the generator, x2 in the azimuthal direction and xa normal to the

surface as shown in figure 3.1.

The coordinate trasformation is given by

x_ = xcos(®) + Rsin(O) ,

tan(x2) = y/z ,

x3 = Rcos(O) - zsin(O) ,

(3.1)

(3.2)

(3.3)

where

R 2 = y_ + z 2 .

The govering equations can be written in the conservation form for the body-fitted

coordinate system as
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OF OG(J-1U) q-_q- O_v2 +

OH OG,,

Ox3 Ox3 '

where U is the conserved varibale vector and F, G, and H represents the convective

flux vectors. G_, represents the viscous flux vectors normal to the body surface. Here

only the viscous diffusion terms in the x3-direction are retained, due to the fact that

in high-Reynolds-number flows, dominent contribution to the viscous effects are from

viscous diffusion normal to the body-surface.

pu

U = ' pv i '

Ipw

pE

puapulu + xxxp

F = j-I , pulv + Xlyp

I puiw + xl_p
pul H

p'u2
pu2u + x2_p

G= j-1 pu2v -t- x2yp

I pu2w + x2._p
pu2H

[ pua
I

flU 3 'tt +

H = j-1 J

x3_p

pu3v + x3up

I pu3w + x3_p
• pu3H

(3.5)

(3.6)

(3.7)

(3.8)
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Re._J

0

¢ltlx3 + X3x¢2

O1 t'x3 + X3y¢2

01tU,r 3 _ X3z_)2

01a + _5¢2

(3.9)

where

_91 = :F3x 2 "]- J'3g 2 "-}'- ;F3z 2 ,

1

q2 = u2 + _3 + w 2 , (3.10)

a= + _-_rTx3 •
X3

Here (u,v,w) are the velocity components in the (x,y,z) directions and

(Ul, u2, u3) are the contravarient velocity components (velocities along the body-fitted

coordinate directions) which are defined as

t/1 : XlxU _L Xly U .__ Xlz?j) ,

tl 2 : X2x72 "-_ X2yU _ X2zW ,

?A3 = X3x72 -'_ X3yU "_- X3zW (3.11)

p is the density, p is the pressure, and E is the total energy. J is the Jacobian of

the transformation and xq are the direction cosines. Additionally, # is the viscosity,

Moo = _ is the free-stream Mach number, Re_ = _ is the free-stream unit

Reynolds number, and Pr = u-e_c is the Prandtl number.
R

Distribution of temperature can easily be obtained from the expression

1 2 v _ w2)] 1)T_T= [E-_(u + + _,(-y- • (3.12)
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Since the steady state flow is symmetric about the plane through the wind-

ward and leeward rays, the mean flow computations were done in the half plane (

•r2 = 0° to z2 = 180 ° ). By symmetry,

{,_,,.3, p,r} Ix2= {.,, _3,p. T} I-_2,

._,ix_= -,,21_2

(:3.13)

(:3.14)

3.2 Boundary-layer Profiles

The physical parameters for which the computations were performed are given in

table :3.1 .

Table 3.1 Details of the cone problem

Parameter Value

Half cone angle

Angle of attack

Free-stream temperature

Free-stream Mach number

Unit Reynolds number

Cone length

0

2 °

94°K

3.5

8.7x106/m

1.574m

The computations were done at the adiabatic wall conditions. In the com-

putation of the meanflow using TLNSaD a mesh size of (97x257x49), i.e, 97 points

in the streamwise direction, 257 points in the normal direction and 49 points in the

azimuthal direction ( windward ray to leeward ray) were used.

The mean-flow profiles at four different streamwise locations (Xl = 0.033rn,

0.197m, 0.3505m and 0.5105m), where the linear stability computations were per-

formed, are presented. The thickness of the boundary layers at the four streamwise

locations for different azimuthal stations are plotted in figures 3.3. Here, the bound-
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Fig. 3.2 Schematic diagram of cross-flow and streamwise velocity profile (Reed &

Saric).

ary layer thickness is defined at a wall-normal location where the values of streamwise

velocities at consecutive normal points differ by less than 0.1%. It is seen that the

boundary layer thickness inceases sharply about three times when the flow goes from

leaward to windward plane. In the left ordinate the boundary layer thickness is plot-

ted in mm and in the right ordinate the nondimensional thickness x3 is shown, which

X3*

x3= (3.15)
V Ue*

Figure 3.4 depict the variation of the boundary layer edge velocity U_ in the az-

imuthal direction at different streamwise locations. As it is seen the variation of the

velocity is small in the azimuthal direction.

First, the meanflow profiles at the streamwise station xl = 0.033m are

given. The velocity profiles tangent to the inviscid stream line at different azimuthal

locations are shown in figure 3.5. There are significantly different characteristic

profiles on the windward and leeward planes. On the the windward side, boundary-

is defined as
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layer is comparatively thin and gradients are quite larger near the wall. On the

leeward plane much thicker layer with smaller surface shear is apparant.

Figure 3.6 show the cross-flow profiles along azimuthal x2 locations. The

cross-flow components were non-dimensionalized with the boundary-layer edge ve-

locity, and positive cross-flow is taken towards positive x2 direction and away from

xl direction as shown in figure :3.2. The cross-flow velocities exhibit local maximum

values at x2 = 90 o and reaches values between 4% and 6% of the freestream velocity.

Closer to the leeward side (around x2 = 160 ° ) negative cross-flow is evident i.e,

cross-flow component changes in sign before it decays to zero towards the boundary-

layer edge. As could be expected, cross-flow phenomena dissapear in windward and

leeward rays due to the symmetry in the mean-flow.

Figure 3.7 shows the azimuthal velocity distributions at different azimuthal

locations. Figures 3.8 and 3.9 show the density and temperature distributions at

this xl location. The similar results of the mean-flow profiles at the other three

streamwise locations xl = 0.3505m and 0.5105m are presented in figures 3.11 to

3.19.

The velocities are nondimensionalized by the characteristic velocity U*_

which is taken to be the local velocity at the edge of the boundary layer in the

streamwise direction in 1D formulation and the boundary layer edge velocity at a

reference station x2 = 90 ° in the case of 2D formulation. The normal coordinate is

normalized by the length scale

FeXl* (3.16)

where u*_ is the kinematic viscosity at the edge of the boundary layer. It is seen

that except close to the leeward plane region the boundary layer profiles are almost

linear in most part of the boundary layer and the boundary layer thickness increases

gradually. Very close to the leeward plane, the profiles exhibit very strong inflectional
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character, especially 165 ° < x2 < 180 °. Figure 3.6 shows the crossflow velocity

component in the positive -/:2 direction at different azimuthal locations. It is observed

as expected that the crossflow velocity is zero at the windward and leeward planes

and reaches maximum in the middle of the refion 90 ° < x2 < 120 ° The maximum

crossflow velocity is about 4% of the boundary layer edge velocity. From this it is

also expected that the boundary layer will be very unstable in the middle region

compared to the region near the windward or leeward planes.

Figures 3.21 shows the contours of the crossflow Reynolds number defined

by

Rec - Qm=_51o% , (3.17)
b'e

in the xlx2 plane. Here Q,_ is the maximum cross-flow velocity (located at (5,_

), and (510% is the thickness defined by the point above (Sm_: at which the cross-flow

velocity is 10% of Qm=_. As expected the cross flow Reynolds number is maximum

in the middle region and increases with the xl direction. The maximum cross-flow

Reynolds number is about 250 at Xl = 0.5105m.
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Fig. 3.3 The variation of boundary-layer thickness in the azimuthal direction at

different streamwise locations.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, the linear stability results obtained using the ID eigenvalue

method and the 2D eigenva[ue method are presented. In order to study the evolution

of the disturbances downstream, the ID and 2D stability computations are performed

at different locations along the streamwise direction : Xl = 0.0a3 , 0.197_n, 0.3505m

and 0.5105m. The results are presented in two sections. In the first section, the

computational results from 1D eigenvalue approach are given and the results from

the 2D eigenvalue approach are presented in section 2.

4.1 1D Eigenvalue problem

Before proceeding to present the linear 1D eigenvalue results, the computational grid

used in the computations are described. As mentioned in Chapter 2, the height of the

computational domain was taken to be about four times the boundary layer thickness.

This was necessary because, eventhough most of the perturbations decay to zero

within the boundary layer, density and normal velocity perturbations persist until

about three to four times the boundary layer thickness. The computational domain

consisted of 85 points in the wall-normal direction, with first 4a points clustered

within the boundary layer according to the algebraic grid-stretching given by equation

Eq. 2.47. Because of enormous requirement of the storage, the grids points in the

2D eigenvalue computation are limited to 49 points. To create a general platform for

the comparison of linear 1D and 2D eigenvalue results, 1D eigenvalue problem was

also solved on a grid size of 49 for few cases. The stability results computed on a

grid size of 49 are found to be accurate within five decimal points to that of obtained

with 85 grid points.
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It was explained in Chapter 2 that in the eigenvalue computations, since

the local method requires a guess value, a global method has to be first used to

compute the whole or part of the eigenvalue spectrum. In the present work. the 1D

global eigenvalue computations are performed using the QZ algorithm of the subrou-

tine ZGEGV in LAPACK software librarv. For a typical 1D problem with 8.5 points

in the normal direction, the leading dimension of the matrix A of the generalized

eigenvalue problem becomes (5x85) = 425 and it takes only 30 seconds on a Sparc-

Ultra-2 workstation (aaaMHz) to compute all of the eigenvalues. These spectrum

of eigenvalues showed only one, or two physical eigenvalues which are unstable. It

was found that, in 1D eigenvalue computations, the initial guess value need not be

close to the unstable eigenvalue sought. Therefore, 1D eigenvalue computations are

performed, in most cases, using the iterative local solver by the continuation method,

i.e, using the eigenvalue at the previous location as the initial guess for the current

location.

To orient the reader with the co-ordinate system used, a schematic diagram

showing flow and wave propagation directions is depicted in figure 4.1. Here m which

Normal to inviscid
stream line

i
\
\
\
\

\

O

_2 / Wave direction

I/_viscid S_eam line

Wave angle

ii / _ Tangent to inviscid
/ - _ "r j stream line

/ .... ..... _..
/._i_.7< .... ) '<.

Fig. 4.1 Schematic diagram of the flow and the wave directions
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is an integer,is the numberof wavesin the azimuthaldirection. In order to determine

the unstableregionof the boundary layer, first severaleigenvaluecomputationswere

performedalong the azimuthal direction from windward ray to the leeward ray"at

numberof fixed streamwiselocationsxl, for different streamwise wavenumber c_ and

azimuthal mode number rn. A sequence of such computations starting from a xl

location closer to the tip of the cone exhibited that the region up to .rl = 0.03m

is linearly stable. Hence, the linear stability results at four :rl locations starting

from xl = 0.033m are given here. The length, velocity and time scales used to

nondimensionalize the variables are as follows.

Table 4.1 Parameters used in nondimensionalization of different scales.

Parameter

L /[mm]
Uel[ ld
txl0 s/[s]

Streamwise distance, X 1 /[r(/]

0.0:33 0.197 0.3505 0.5105

0.0627 0.146 0.192 0.231

663.3 659.7 658.4 658.2

9.46 22.13 29.18 35.11

The linear 1D stability results at streamwise locations X 1 : 0.033rn, X 1 ----

0.197m, xl = 0.3505m and xl = 0.5105rn are shown in the figures 4.2 to 4.6, 4.8

to 4.11, 4.12 to 4.19 and 4.20 to 4.22 respectively. Because the stability results

at these stations are similar, only the results at xl = 0.033m and xl = 0.3505rn are

discussed in details.

Xl = 0.033m

The figures 4.2a, 4.2b, 4.3a and 4.3b show the variation of temporal ampli-

fication rates wi and temporal frequency w_ with streamwise wavenumber a for dif-

ferent azimuthal mode number rn computed at the streamwise location xl = 0.033m

at different azimuthal positions x2 = 45 ° , x2 = 90 ° , x2 = 120 ° and x2 = 150 °

respectively. The results show that the temporal frequency wr varies linearly with



wavenumbera for all the azimuthal mode numbers shown and that the phase speeds,

defined as C = _ are approximatelv constant and equal to 0.7. Further, the station-

ary waves, i.e, _,'r = 0, are stable at this Xx location. At x2 = 45°, the disturbances

are linearly unstable for -15 < m < -9. The maximum amplification rate is about

0.0006 and occurs at rn = -12 and a = 0.1 . The similar variations of the temporal

amplification rates are observed at :r2 = 90 °, x2 = 120 ° and ,r2 = 150 °. However,

as one moves from the windward side z2 = 45 °, toward the leeward side ,r2 = 150 °,

the unstable streamwise wavenumber a shift from a range of (0.07 _ .13) to (0.02

0.07). The locally most amplified frequency is found to be a,, = (0.038, 0.00101 ) at the

azimuthal location of x2 = 120 ° for c_ = 0.07 and m = -9 and aa = (0.0:3, 0.00103)

at x2 = 150 ° for a = 0.05 and m = -6. The negative sign of the mode number m

indicates that the propagation of the disturbance wave is in the negative side of x2.

The local wave propagation direction is given by

( m
_b = tan -1 K) (4.1)

Ctr

where R is the radius of the cone. The wave angles for the most amplified wave at

different x2 locations are given in the Table 4.2. In this table, e is the inclination of

the inviscid stream line to the xl axis (figure 4.1). One can see that in the negative

x2 direction most amplified waves are inclined at about 70 ° from the inviscid stream

line. Figures 4.4 and 4.5 show the variation of the amplification rate vai and the

Table 4.2 The waveangles for the most amplified wave at different x2 locations.

¢/[°]1.68

90 2.73

120 2.30

150 1.22

69.09

69.09

71.67

71.02

¢= -_+e

70.77

71.82

73.39

72.24

frequency cot along the azimuthal direction for a constant wavenumber a = 0.05
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for different azimuthal mode number m. Figures 4.6 and 4.7 depict the results

for c_ = 0.07. It is observed that the frequencies are lower in the middle than they

are near the windward and leeward regions. This is due to the fact that cross-flow

instability is dominated by low frequency disturbances compared to that without

the cross-flow. As discussed in Chapter '2, the cross-flow is maximum in the middle

region and hence the most unstable disturbances are low frequencies compared to

that near the windward and leeward plane.

Zl = 0.3,50,5m

The variation of the temporal amplification rate a.'i and frequency _o_ with

wavenumber c_T at z2 = 0°, 20 °, 41 °, 97 °, 120 ° and 160 ° at the streamwise location

•rl = 0.3,50,5m are plotted in figures 4.12a, 4.12b, 4.13a, 4.13b, 4.14a and 4.14b.

Figures 4.1,5 and 4.16 show the variation of the amplification rate and the frequency

along the azimuthal direction for a constant wavenumber c_ = 0.07 for different

azimuthal mode number rn. It is seen from the figure 4.12 that the amplification rates

are the highest closer to c_ = 0.07. First observation is that the amplification rates are

high for disturbances with rn = -30 to -40. The maximum amplification rate is wi =

0.0046 and this occurs around z2 = 90 ° for m = -.30 and c, = 0.07. The amplification

rates between 40 ° < a:2 < 130 ° vary in the range from 0.004 to 0.0046 and it decreases

gradually to 0.0026 and 0.003 at a:2 = 0 ° and 160 ° respectively. The most unstable

frequencies are lower in the middle region compared to that near the windward and

leeward planes. For m = -30 and c_ = 0.07 the frequency of unstable disturbance

is 0.039 at z2 = 80 ° and they are 0.046 and 0.051 at z2 = 0° and 160 ° respectively.

These translate to 17.67 kHz at a:2 = 80 ° and 20.83 kHz and 23.1 kHz at z2 = 0 ° and

160 ° respectively. It is also seen that the frequencies of the unstable disturbances

decrease with increasing negative rn. For rn = -60, the unstable frequency is 0.034

at z2 = 80 ° and it is 0.041 for rn = -20. The reason for this is that with increasing

m, the wavevector aligns closer to the cross-flow direction and the frequencies of the
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unstable disturbances decrease. The results show that the amplification rate of the

disturbances with positive m are small except closer to the windward plane. It is

also observed that at the windward plane z2 = 0 ° the eigenvalues for the positive

and negative m have the same values. This is due to the fact that at z2 = 0%

the cross-flow velocity is zero and the meanflow is two-dimensional and it does not

differentiate between positive and negative m. values. When one moves away from the

windward plane the cross-flow velocity increases, hence the mean flow becomes three-

dimensional and the eigenvalues depend on the positive or the negative direction at

which the wavevector is aligned. Another observation is that there is an apparent

symmetry about the eigenvalues about z2 = 90 °. This can be explained from the

observation that the maximum cross-flow velocity increases from zero to a peak value

in the middle and decreases to zero again at the leeward plane. Hence the velocity

profiles are approximately symmetrical about the middle plane and it is expected

that the eigenvalues will also be symmetric. This observation becomes important

when the results from 2D eigenvalue approach is interpreted in the next section.

As a prelude to later comparisons, all the eigenvalues obtained for different

azimuthal mode numbers rn at different azimuthal locations for the wavenumber

o_ = 0.074 are plotted in the complex co-plane in figure 4.17. This is a representation

of figures 4.15 and 4.16 in the complex plane. Some of the azimuthal locations z2 at

which these eigenvalues are computed are also marked. One thing to conclude from

this figure is that the eigenvalues are clustered in a confined region in the complex co-

plane. Figure 4.18 and 4.19 depict the amplitudes of eigenfunction distribution for

the streamwise velocity ]ull and normal velocity lual at different azimuthal locations

for rn = -30 and o_ = 0.07. It is seen that the eigenfunctions for the streamwise

velocity decrease to zero at the edge of the boundary layer, however, the eigenfunction

for the normal velocity decrease to zero slowly. Another observation is that the

locations of the maximum amplitude move towards the edge of the boundary layer
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when one movestoward the leewardplane from the windward plane. Similarly fig-

ures4.20 to 4.22showthe 1D stability resultsobtained at the streamwiselocation

zl = 0.,5105m.

Summarizing the linear stability results of 1D eigenvalue method the fol-

lowing conclusions can be made.

• The boundary layer region up to zl = 0.03m is linearly stable and is unstable

beyond that location. However, the neutral stability region is not a straight

line across the cone at zl = 0.0am but is curved with the front of the neutral

stability region falling near 90 ° . This is due to the effect of varying cross-flow

components from windward to leeward locations.

• The most amplified temporal amplification rate occurs around a:2 = 90 ° for a

streamwise wavenumber a = 0.07 and azimuthal mode number m = -30,-40.

• The effect of cross-flow component is dominant in the middle region in azimuthal

direction and this is manifested in the increase in the temporal amplification

rate around z2 = 90 ° for negative rn = -10 to -60 and the temporal amplifi-

cation rate for positive rn values.

• The unstable temporal disturbance waves with most amplification rate _o,- travel

in the negative side of a:2 direction. The unstable waves propagating in the

positive side of z2 become stable after z2 = 90 °.
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4.2 2D Eigenvalue Problem
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In this section, the results from the 2D eigenvalue computations are presented. The

computations are performed at different X 1 locations .rl = 0.033m, ,, = 0.197m ,

,rl = 0.3505rn and X 1 = 0.5105m.

As mentioned earlier, the main difficulty in the 2D eigenvalue computations

is the requirement of large memory capacity. Therefore, in a typical 2I) eigenvalue

computations the maximum number of grid points in the wMl-normal direction is

limited to 49 points and the Fourier modes to a maximum of 89. However, in the

regions close to the tip of the cone, it was found that most of the unstable disturbances

could be captured accurately with 59 Fourier modes. This permitted the eigenvalue

computations at Xl = 0.033m be performed with 65 wMl-normal points and these

results are found to be consistent with that of 49 normal points and 89 Fourier modes.

Unlike in 1D stability computations where the eigenvalue spectrum for a

given azimuthal mode number m consisted only of a few sparse unstable eigenval-

ues, it was found from the 2D eigenvalue computations that the eigenvalue spectrum

showed a clustered nature of the unstable eigenvalues in the complex w plane. There-

fore, it is necessary that prescribed initial guess for the local 2D solver be accurate,

otherwise the solution might converge to some other eigenvalue. For the above men-

tioned typical 2D problem with 49 points in the wMl-normal direction and 89 Fourier

modes, the leading dimension of the matrix A of the generalized eigenvalue problem

becomes (5x[89+l]x49) = 22050. It takes more than 200 CPU-hours on a Sparc-

Ultra-2 workstation(333MHz) and requires about 450 MW memory to compute all

the eigenvalues. Therefore, the ARPACK software package employing the Implicitly

Restarted Arnoldi Method (refer Chapter 2 for details) is used to obtain a specified

number of eigenvalues in a region close to a given point in the complex w plane.

When applied to the same problem of size 22050 , it takes only about 2 hours to
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compute 10 eigenvalues that are located close to specified region of interest, on the

workstation quoted above.

The 2D stability computations performed at streamwise locations :r_ =

0.033m, 0.197rn, 0.3505m and 0.5105rn and the corresponding results are presented in

figures 4.43 to 4.61 , 4.62 to 4.76, 4.2a to 4.41 and 4.77 to 4.90 respectively. From

the linear stability results of 1D eigenvalue method it was noted that the maximum

temporal amplification rates in the unstable boundary layer region occurred for the

range of wave numbers c_ = 0.06 to 0.1 . Therefore the 2D eigenvalue computations

are performed for the same range of c_. The stability results at the above mentioned

stations are found to be similar, and hence results at xl = 0.a505rn are discussed in

details first.

a'l = 0.3505m

Figures 4.23 to 4.41 show the results obtained at station xl = 0.3505m for

seven different eigenvalues, both symmetric and anti-symmetric modes, for c_ = 0.07.

As it was discussed earlier, there exists large number of eigenvalues and the resu}ts

are presented only for the most amplified disturbances. In the symmetric mode,

the disturbances are assumed to be symmetric about the windward plane (x2 = 0 °)

and in the antisymmetric mode the disturbances are taken to be antisymmetric ( for

detailed explanations refer Chapter 2).

Figure 4.23a shows the distribution of streamwise velocity disturbance fzl_al

along the azimuthal direction at the wMl-normal height x3 = 0.721ram where it

has the maximum amplitude for the wavenumber _ = 0.07 and the eigenvalue is

_o = (0.0386, 0.00437). The local Reynolds number is 1823 which is defined as

_o.*xl (4.2)
R =V 7

It can be seen that the disturbances are symmetric about x2 = 0 ° and confined

between 80 ° to 140 ° with the maximum amplitude occurring at 120 °. The corre-
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spondingdistribution of Fourier componentsof the streamwisevelocity disturbance

Itqf[ with Fourier modesm is plotted in figure 4.23b. It is noted that the Fourier

components lUlfl falls in a bell-shape distribution with negligible magnitude until

m = 20 then sharply increasing to a maximum around m = 40 -,_ 50 and thereafter

decaying gradually to zero around m = 80. The contour plots of lull and ul_=t in the

positive x2x3 plane for the same temporal eigenvalue co are depicted in figure 4.2.1a

and 4.24b. The distribution of the streamwise velocity disturbance profile and nor-

real velocity disturbance profile are plotted in figures 4.25a and 4.25b respectively.

It can be observed that the normal velocity perturbation ,23 persist until about four

times the boundary layer thickness, whereas the streamwise velocity perturbation dl

decays to zero within the boundary layer, which is equal to x3 = 20 in nondimensional

quantity. (The variation of the boundary-layer thickness in azimuthal direction at

different streamwise locations are presented in figure 3.3).

The figures 4.26 to 4.27, 4.28 to 4.29 _,resent the results of symmetric

disturbances with co = (0.04205, 0.00272) and co = (0.0491, 0.00264) which are similar

to the previous results corresponding to co = (0.0386,0.00437). However, a closer

examination of these results show that the clustered disturbances shift towards the

leeward side with disturbance amplitude peaking at x2 = 140 ° and a:_ = 160 ° for

co = (0.04205, 0.00272) and co = (0.0491,0.00264) respectively.

The 2D stability results for co = (0.04199, 0.00349) are shown in 4.30 to 4.32

and, in contrast to the previous results discussed, they have some different interesting

features. Figure 4.30a shows the distribution of streamwise velocity disturbance

_1_=1 along the azimuthal direction at the wall-normal height xa = 0.487mm. An

important observation is that , considering only the half azimuthal plane x2 = 0 ° to

x_ = 180 °, the disturbances are clustered in two different regions - around x2 = 30 °

and 140 °. This complies with the observation of 1D results that there is an apparent

symmetry of the eigenvalues about x2 = 90 ° caused by an approximately symmetric
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distribution of cross-flowin the middle azimuthaldirection. However,looking at the

figure 4.30bwhich depicts the distribution of 8lT_=lalong the azimuthal direction at

:r3= 0.8bmm,it isapparentthat the dist.urbancesclusteredaroundx2 = 30 ° decay to

zero whereas the counterparts at z2 = 140 ° grow to a maximum. The corresponding

distribution of Fourier components of the streamwise velocity disturbance I,z_fl with

Fourier modes m is plotted in figure 4.31. The similar results of an eigenvalue ,., =

(0.0451,0.00272) that exhibits clustered disturbance eigenfunctions around ,re = 10 °

and 150 ° are shown in figures 4.33 to 4.35.

Next, the results for anti-symmetric modes are presented. The figures 4.36

to 4.37 show the results of co = (0.0437,0.002,5). From figure 4.36a one can note

that the disturbances are anti-symmetric and clustered around z2 = -150 ° and 150 °.

Also, the results for the case of co = (0.0435, 0.00315) are presented in figures 4.38 to

4.41. The results show that the disturbances are clustered around z2 = ao ° and 150 °,

considering only the positive half of the azimuthal plane. However, the disturbances

around z2 = 30 ° are dominant and larger than the disturbances closer to the leeward

side.

An important observation about the results of symmetric and anti-symmetric

disturbances is that for identical eigenvalues , there are apparently not much differ-

ence between the eigenfunction distributions of symmetric and anti-symmetric modes

which are clustered around the middle of the azimuthal plane. However, eigenfunc-

tions that peak close to the windward side exhibit a noticeable differences between

symmetric and anti-symmetric modes. This observation suggest that these clustered

disturbances in the middle of the azimuthal direction are not affected by the mean-

flow quantities (especially the azimuthal velocity components ) away from them and

there is not much interaction between the disturbances in the positive half and the

negative half of the x2x3 plane.

Finally, the distribution of the 2D eigenvalue spectrum need to be discussed.
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Figure 4.42a showsthe plot of temporal amplification rate coiwith frequency_,_

for wavenumbera = 0.07 at Xl = 0.3.505rn. The maximum amplification rate is

wi = 0.00437 and the corresponding frequency _ = 0.0386. The eigenfunctions for

this eigenvalue are clustered in the middle of the azimuthal plane and peak around

x2 = 120 °. The x.2 locations where the eigenfunctions peak are also marked on the

figure. An eigenvalue marked with two angles indicates that the disturbances are

clustered at two isolated x2 regions and peak at the angles quoted. In figure 4.42b ,

the 1D eigenvalues along with the 2D eigenvalues are plotted on complex _,, plane. A

closer examination of this figure show that the most amplified temporal amplification

rates of 2D stability method occur around ,r,2 = 120 ° whereas in 1D method they fall

around x2 = 90 °. The shift in the most amplified temporal amplification rates a0i of

the 2D eigenvalues toward the leeward side can be possibly explained as follows. The

instability is determined by the degree of inflection of the meanflow profiles and the

contribution of cross-flow components towards instability is maximum at ,r2 = 90 °.

This is clearly manifested in the maximum increase of the amplification rates of 1D

eigenvalue method. However, in the case of 2D eigenvalue method which incorporates

the variation of meanflow in the azimuthal direction, the meanflow is more unstable

towards the leeward side and therefore shifting the most amplification rates toward

the leeward side.

x: = 0.033rn

Figures 4.43 to 4.61 depict the results obtained at xl = 0.033rn for different

axial wavenumbers a = 0.07, 0.08, 0.09 and 0.1. Figure 4.43 shows the distribution

of eigenfunction and the Fourier components for w = (0.0391, 0.00128) and axial

wavenumber a = 0.07. The corresponding frequency is 65.8 kHz. It can be noted

that, the eigenfunction clustered around 120 °. The maximum amplification of the

eigenfunction occurs at a wall-normal height of xa = 0.255rn, and which is about 70

% of the boundary-layer thickness ( For detailed data on distribution of boundary
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layer thicknessrefer to figure 3.3 ). The contour plot for the absolutevalueof the

streamwiseperturbation velocity is shownin figure 4.44. Figure 4.4:3showsthe

eigenfunctiondistribution for the axial velocity and the normal velocity at different

azimuthal stations. The similar plots for an eigenvalueca= (0.0387,0.00311)are

given in figures 4.46 to 4.47. In figure 4.48 the plots of eigenfunctiondistributions

aregiven tbr the frequencyof f = [10.4/,:Hz. Figures 4.49 to 4.50 show the results

for the axial wavenumber oe = 0.1 and 00=(0.06,56,0.000114). Unlike the previous

two cases, this eigenfunctions is clustered around x2 = 0° for Xa < 0.i05mm and

around x2 = 130 ° for xa > 0.105rnm. Figure 4.49 shows the spectral distribution

of the axial velocity at different heights with the mode number rn. The distribution

of streamwise velocity perturbation and temperature perturbation profiles along the

azimuthal direction are depicted in figure 4.50 and 4.51 respectively. Figures 4.52 to

4.53 show the similar results for the case of anti-symmetric mode with frequency of

107.6 kHz, ca = (0.0639, 0.00094) and c_ = 0.1. Also the figures 4.54 to 4.57 depict the

similar distributions for c_ = 0.08, ca= (0.05039, 0.00164) where the eigenfunction has

maximum amplitude around x2 = 0° and 140 °. Similarly figures 4.58 to 4.61 show

the eigenfunction distributions and the mode shapes for anti-symmetric disturbances

at c_ = 0.08.

Xl = 0.1978m

Similarly figures 4.62 to 4.76 show the results obtained at xl = 0.1978rn

at different axial wavenumbers. Figures 4.62 to 4.63 depict the case of a symmetric

mode where the eigenfunctions are clustered around 120 °. In figures 4.64 to 4.67

the distribution of eigenfunctions for a symmetric mode with frequency 42.2 kHz

, ca = (0.0589, 0.00301) and wavenumber a = 0.09 are plotted. It can be noted

that the eigenfunctions clustered around x2 = 0 ° and x2 = 150 °. However, the

amplitude of the eigenfunctions at x2 = 0 ° are dominant for xa = 0.287rnm and die

out gradually as one moves towards the edge of the boundary layer. Figures 4.68
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and 4.69 show the resnlts for w = (0.0572, 0.00348) and figures 4.70 to 4.71, 4.72 to

4.74 and 4.75 to 4.76 show the distribution of the axial velocity fluctuations along

the azimuthal direction and the spectral distributions for different w = (0.06056,

0.00328), (0.0563, 0.00131), (0.0574, 0.00115) and (0.0546, 0.00161). It is observed

that the eigenfunctions are clustered near the windward side for these eigenvalues.

•rl = 0.5105m

The 2D stability results at the station xl = 0.5105m are given in figures

4.77 to 4.90. Figures 4.77 to 4.78, 4.79 to 4.80, 4.81 to 4.82, 4.83 to 4.85,

show the eigenfunctions and the spectral distribution for four different eigenvalues

= (0.0385, 0.00445), (o.0423, o.oo351), (0.0419, 0.00439), (0.o5o7, o.o028s) for sym-

metric modes. Eigenfunction corresponding to the first eigenvalue peaks around 120 °

and the spectral distribution has a Gausian shape as observed in other stations. The

eigenfunctions corresponding to the second eigenvalue are confined to two isolated

regions, one near the windward side between 0 ° - 50 ° and the other near the lee-

ward side between 120 ° - 150 °. The corresponding spectral shape shows two different

types of distributions at the edge of the boundary layer the shape has a Gausian

distribution and near the wall a modulated shape is observed. This observation is

made in other stations when the eigenfunctions are clustered in two regions. Similar

observation is made for the fourth eigenvalue. Eigenfunction for the third eigenvalue

peaks around 20 ° and the spectral distribution has a Gausian shape with a long tail

at higher mode numbers.

Figure 4.86 to 4.88, 4.89 to 4.90 show the eigenfunctions and the spectral

distributions for two different eigenvalues w = (0.0486, 0.0427), 0.0517, 0.00411) for

anti-symmetric modes. The eigenfunctions are confined to two different regions, one

close to the windward side and the other close to the leeward side and as it was

observed earlier, the spectral distributions show two different shapes.

The results of the 2D linear stability results can be summarized as follows.
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• Spectrum of 2D eigenvalues exhibits clustered nature of eigenvalues in the w plane.

• As expected earlier, the distributions of the disturbances along the azimuthal di-

rection z2 are clustered in confined regions. In the cases where the disturbances

are clustered in two different regions in :r2 direction, they are nearly symmetric

about z2 = 90 °.

• The most amplified temporal amplification rates occur around ,r2 = 120 °.

• The differences between eigenfunctions of symmetric and anti-symmetric modes

are pronounced when the eigenfunction distributions are confined near the

windward side (z2 = 0°). However, the differences are insignificant when the

eigenfunctions are confined in the middle region.
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Fig. 4.75 Case 7: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f = 39.16 kHz. (_o = (0.0546, 0.00161) , a = 0.09,
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CHAPTER 5

CONCLUSIONS

A program is developed to investigate the linear stability of three-dimensional

compressible boundary layer flows over bodies of revolutions. The problem is for-

mulated as a 2-D eigenvalue problem incorporating the meanflow variations in the

normal and azimuthal directions. Thereby, the normal mode solutions are sought in

the whole plane perpendicular to the axial direction rather than in a line normal to

the wall as is done in the classical theory. The case of a supersonic flow over a sharp

cone with 5 ° half-included angle at 2 ° angle of attack was considered. The stability

computations were done using 1D and 2D eigenvalue methods. In the case of 2D

eigenvalue computations Implicitly Restarted Arnoldi Method was used to perform

global eigenvalue search and those values were used as guess values for the local 2D

eigenvalue computations.

In the first chapter the fundamentals of the linear stability was reviewed.

The nature of the instability in compressible and incompressible two- dimensional

and three-dimensional boundary layers and the formulations of the stability problems

as temporal and spatial problems were explained. Also the general historical review

of the research on the stability were mentioned.

Starting from the mathematical formulation of the stability problem of

the three-dimensional compressible boundary layer in generalized curvilinear coordi-

nate system, the numerical method and solution procedures for the case of a three-

dimensional boundary layer over a sharp cone at an angle of attack were discussed in

chapter2. The problem was formulated as 1D and 2D eigenvalue problem. In chapter

3, the results of meanflow computation over a sharp cone with 5° half-included angle

at 2 ° angle of attack obtained using TLNS3D were presented.
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In chapter 4 , the results of linear stability computations for the three-

dimensionalcompressibleboundary layer overa sharp coneat an angleof attack as

I D and 2D eigenvalue method were presented. The stability computations were done

at four different stations along the streamwise direction. In 1D eigenvalue problem

the stability computations were performed as in classical theory - neglecting the

variation of the meanflow in azimuthal and streamwise direction. The 1D stability

results showed that the boundary layer region up to xl= 0.03m is stable and most

amplified temporal amplification rate occur around x2 = 90 °. Also the effect of cross-

flow component was noticed to be in the middle region in the azimuthal direction and

it manifested itself as increase in the temporal amplification rate around x2 = 90 ° for

negative mode numbers m and decrease in the temporal amplification rate for positive

mode numbers. Unlike the 1D stability results, where the eigenvalue spectrum for a

given azimuthal mode number m consisted only a few sparse unstable eigenvalues,

the 2D temporal eigenvalue method showed that in the 2D eigenvalue spectrum the

unstable eigenvalues were clustered in the complex co plane. Further, the distributions

of eigenfunctions along the azimuthal direction were found to clustered in confined

regions and were approximately symmetric about x2 = 90 °. Due to the huge memory

requirement it is not possible to increase the number of points and the number of

modes.

5.1 Recommendations for the future work

The major barriers in the stability computations as 2D eigenvalue method are re-

quired memory and the CPU time. These limitations on the computational resources

make the number of Fourier modes and the grid points in the wall normal directions

kept to a range. Also, as explained earlier the spatial stability computations need

much more memory resources than that of temporal eigenvalue computations.

Thus, the recommendations for the future research are as follows;
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• The stability computationsof the three-dimensionalcompressibleboundary layers

as spatial eigenvalueproblem.

• Studying of evolution of eachstability' modeusing PSE methods.

• Computation of N-factor and prediction of transition.

• Introducing a controlled disturbance, suchasa point sourceof the form e i'_° and

studying the evolution of it.

k.

L
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CHAPTER 5

CONCLUSIONS

A program is developed to investigate the linear stability, of three-dimensional

compressible boundary layer flows over bodies of revolutions. The problem is for-

mulated as a 2-D eigenvalue problem incorporating the meanflow variations in the

normal and azimuthal directions. Thereby, the normal mode solutions are sought in

the whole plane perpendicular to the axial direction rather than in a line normal to

the wall as is done in the classical theory. Tile case of a supersonic flow over a sharp

cone with 5° half-included angle at 2 ° angle of attack was considered. The stability

computations were done using 1D and 2D eigenvalue methods. In the case of 2D

eigenvalue computations Implicitly Restarted Arnoldi Method was used to perform

global eigenvalue search and those values were used as guess values for the local 2D

eigenvalue computations.

In the first chapter the fundamentals of the linear stability was reviewed.

The nature of the instability in compressible and incompressible two- dimensional

and three-dimensional boundary layers and the formulations of the stability problems

as temporal and spatial problems were explained. Also the general historical review

of the research on the stability were mentioned.

Starting from the mathematical formulation of the stability problem of

the three-dimensionM compressible boundary layer in generalized curvilinear coordi-

nate system, the numerical method and solution procedures for the case of a three-

dimensional boundary layer over a sharp cone at an angle of attack were discussed in

chapter2. The problem was formulated as 1D and 2D eigenvalue problem. In chapter

3, the results of meanflow computation over a sharp cone with 5° half-included angle

at 2° angle of attack obtained using TLNS3D were presented.
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In chapter 4 , the results of linear stability computations for the three-

dimensionalcompressibleboundary layer overa sharp coneat an angleof attack as

ID and 2D eigenvaluemethodwerepresented.The stability computationsweredone

at. four different stations along the streamwisedirection. In 1D eigenvalueproblem

the stability computations were performed as in classical theory - neglecting the

variation of the meanflow in azimuthal and streamwise direction. The 1D stabilitv

results showed that the boundary layer region up to Xx= 0.03m is stable and most

amplified temporal amplification rate occur around x2 = 90 °. Also the effect of cross-

flow component was noticed to be in the middle region in the azimuthal direction and

it manifested itself as increase in the temporal amplification rate around x2 = 90 ° for

negative mode numbers m and decrease in the temporal amplification rate for positive

mode numbers. Unlike the 1D stability results, where the eigenvalue spectrum for a

given azimuthal mode number m consisted only a few sparse unstable eigenvalues,

the 2D temporal eigenvalue method showed that in the 2D eigenvalue spectrum the

unstable eigenvalues were clustered in the complex co plane. Further, the distributions

of eigenfunctions along the azimuthal direction were found to clustered in confined

regions and were approximately symmetric about x2 = 90 °. Due to the huge memory

requirement it is not possible to increase the number of points and the number of

modes.

5.1 Recommendations for the future work

The major barriers in the stability computations as 2D eigenvalue method are re-

quired memory and the CPU time. These limitations on the computational resources

make the number of Fourier modes and the grid points in the wall normal directions

kept to a range. Also, as explained earlier the spatial stability computations need

much more memory resources than that of temporal eigenvalue computations.

Thus, the recommendations for the future research are as follows;
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• The stability computationsof the three-dimensionalcompressibleboundary layers

as spatial eigenvalueproblem.

• Studying of evolution of eachstability modeusing PSE methods.

• Computation of N-factor and prediction of transition.

• Introducing a controlled disturbance, suchasa point sourceof the form e i've and

studying the evolution of it.
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